Solar Energy

Solar Energy

We want to share with you how we live our dream to become financially independent.

Join us at our thrilling day-to-day adventure trip to freedom.

Please register with and follow our site!

Get new content delivered directly to your inbox.

Solar energy

Solar energy is radiant light and heat from the Sun that is harnessed using a range of ever-evolving technologies such as solar heating, photovoltaics, solar thermal energy, solar architecture, molten salt power plants and artificial photosynthesis.[1][2]

It is an essential source of renewable energy, and its technologies are broadly characterized as either passive solar or active solar depending on how they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power, and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light-dispersing properties, and designing spaces that naturally circulate air.

The large magnitude of solar energy available makes it a highly appealing source of electricity. The United Nations Development Programme in its 2000 World Energy Assessment found that the annual potential of solar energy was 1,575–49,837 exajoules (EJ). This is several times larger than the total world energy consumption, which was 559.8 EJ in 2012.[3][4]

In 2011, the International Energy Agency said that “the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible, and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating global warming, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared”.[1]


The Earth receives 174 petawatts (PW) of incoming solar radiation (insolation) at the upper atmosphere.[5] Approximately 30% is reflected back to space while the rest is absorbed by clouds, oceans and land masses. The spectrum of solar light at the Earth’s surface is mostly spread across the visible and near-infrared ranges with a small part in the near-ultraviolet.[6] Most of the world’s population live in areas with insolation levels of 150–300 watts/m2, or 3.5–7.0 kWh/m2 per day.[7]

Solar radiation is absorbed by the Earth’s land surface, oceans – which cover about 71% of the globe – and atmosphere. Warm air containing evaporated water from the oceans rises, causing atmospheric circulation or convection. When the air reaches a high altitude, where the temperature is low, water vapor condenses into clouds, which rain onto the Earth’s surface, completing the water cycle. The latent heat of water condensation amplifies convection, producing atmospheric phenomena such as wind, cyclones and anticyclones.[8] Sunlight absorbed by the oceans and land masses keeps the surface at an average temperature of 14 °C.[9] By photosynthesis, green plants convert solar energy into chemically stored energy, which produces food, wood and the biomass from which fossil fuels are derived.[10]

The total solar energy absorbed by Earth’s atmosphere, oceans and land masses is approximately 3,850,000 exajoules (EJ) per year.[11] In 2002, this was more energy in one hour than the world used in one year.[12][13] Photosynthesis captures approximately 3,000 EJ per year in biomass.[14] The amount of solar energy reaching the surface of the planet is so vast that in one year it is about twice as much as will ever be obtained from all of the Earth’s non-renewable resources of coal, oil, natural gas, and mined uranium combined,[15]

The potential solar energy that could be used by humans differs from the amount of solar energy present near the surface of the planet because factors such as geography, time variation, cloud cover, and the land available to humans limit the amount of solar energy that we can acquire.

Geography affects solar energy potential because areas that are closer to the equator have a higher amount of solar radiation. However, the use of photovoltaics that can follow the position of the Sun can significantly increase the solar energy potential in areas that are farther from the equator.[4] Time variation effects the potential of solar energy because during the nighttime, there is little solar radiation on the surface of the Earth for solar panels to absorb. This limits the amount of energy that solar panels can absorb in one day. Cloud cover can affect the potential of solar panels because clouds block incoming light from the Sun and reduce the light available for solar cells.

Besides, land availability has a large effect on the available solar energy because solar panels can only be set up on land that is otherwise unused and suitable for solar panels. Roofs are a suitable place for solar cells, as many people have discovered that they can collect energy directly from their homes this way. Other areas that are suitable for solar cells are lands that are not being used for businesses where solar plants can be established.[4]

Solar technologies are characterized as either passive or active depending on the way they capture, convert and distribute sunlight and enable solar energy to be harnessed at different levels around the world, mostly depending on the distance from the equator. Although solar energy refers primarily to the use of solar radiation for practical ends, all renewable energies, other than Geothermal power and Tidal power, derive their energy either directly or indirectly from the Sun.

Active solar techniques use photovoltaics, concentrated solar power, solar thermal collectors, pumps, and fans to convert sunlight into useful outputs. Passive solar techniques include selecting materials with favorable thermal properties, designing spaces that naturally circulate air, and referencing the position of a building to the Sun. Active solar technologies increase the supply of energy and are considered supply side technologies, while passive solar technologies reduce the need for alternate resources and are generally considered demand-side technologies.[20]

In 2000, the United Nations Development Programme, UN Department of Economic and Social Affairs, and World Energy Council published an estimate of the potential solar energy that could be used by humans each year that took into account factors such as insolation, cloud cover, and the land that is usable by humans. The estimate found that solar energy has a global potential of 1,600 to 49,800 exajoules (4.4×1014 to 1.4×1016 kWh) per year.[4]

Thermal energy

Solar thermal technologies can be used for water heating, space heating, space cooling and process heat generation.[21]

Early commercial adaptation

In 1878, at the Universal Exposition in Paris, Augustin Mouchot successfully demonstrated a solar steam engine, but couldn’t continue development because of cheap coal and other factors.

In 1897, Frank Shuman, a US inventor, engineer and solar energy pioneer built a small demonstration solar engine that worked by reflecting solar energy onto square boxes filled with ether, which has a lower boiling point than water and were fitted internally with black pipes which in turn powered a steam engine. In 1908 Shuman formed the Sun Power Company with the intent of building larger solar power plants. He, along with his technical advisor A.S.E. Ackermann and British physicist Sir Charles Vernon Boys,[citation needed] developed an improved system using mirrors to reflect solar energy upon collector boxes, increasing heating capacity to the extent that water could now be used instead of ether. Shuman then constructed a full-scale steam engine powered by low-pressure water, enabling him to patent the entire solar engine system by 1912.

Shuman built the world’s first solar thermal power station in Maadi, Egypt, between 1912 and 1913. His plant used parabolic troughs to power a 45–52 kilowatts (60–70 hp) engine that pumped more than 22,000 litres (4,800 imp gal; 5,800 US gal) of water per minute from the Nile River to adjacent cotton fields. Although the outbreak of World War I and the discovery of cheap oil in the 1930s discouraged the advancement of solar energy, Shuman’s vision, and basic design were resurrected in the 1970s with a new wave of interest in solar thermal energy.[22] In 1916 Shuman was quoted in the media advocating solar energy’s utilization, saying:

We have proved the commercial profit of sun power in the tropics and have more particularly proved that after our stores of oil and coal are exhausted the human race can receive unlimited power from the rays of the Sun.

— Frank Shuman, New York Times, 2 July 1916[23]

Water heating

Solar hot water systems use sunlight to heat water. In middle geographical latitudes (between 40 degrees north and 40 degrees south), 60 to 70% of the domestic hot water use, with water temperatures up to 60 °C (140 °F), can be provided by solar heating systems.[24] The most common types of solar water heaters are evacuated tube collectors (44%) and glazed flat plate collectors (34%) generally used for domestic hot water; and unglazed plastic collectors (21%) used mainly to heat swimming pools.[25]

As of 2007, the total installed capacity of solar hot water systems was approximately 154 thermal gigawatt (GWth).[26] China is the world leader in their deployment with 70 GWth installed as of 2006 and a long-term goal of 210 GWth by 2020.[27] Israel and Cyprus are the per capita leaders in the use of solar hot water systems with over 90% of homes using them.[28] In the United States, Canada, and Australia, heating swimming pools is the dominant application of solar hot water with an installed capacity of 18 GWth as of 2005.[20]

Heating, cooling and ventilation

In the United States, heating, ventilation and air conditioning (HVAC) systems account for 30% (4.65 EJ/yr) of the energy used in commercial buildings and nearly 50% (10.1 EJ/yr) of the energy used in residential buildings.[29][30] Solar heating, cooling and ventilation technologies can be used to offset a portion of this energy.

Thermal mass is any material that can be used to store heat—heat from the Sun in the case of solar energy. Common thermal mass materials include stone, cement, and water. Historically they have been used in arid climates or warm temperate regions to keep buildings cool by absorbing solar energy during the day and radiating stored heat to the cooler atmosphere at night. However, they can be used in cold temperate areas to maintain warmth as well. The size and placement of thermal mass depend on several factors such as climate, daylighting, and shading conditions. When duly incorporated, thermal mass maintains space temperatures in a comfortable range and reduces the need for auxiliary heating and cooling equipment.[31]

A solar chimney (or thermal chimney, in this context) is a passive solar ventilation system composed of a vertical shaft connecting the interior and exterior of a building. As the chimney warms, the air inside is heated, causing an updraft that pulls air through the building. Performance can be improved by using glazing and thermal mass materials[32] in a way that mimics greenhouses.

Deciduous trees and plants have been promoted as a means of controlling solar heating and cooling. When planted on the southern side of a building in the northern hemisphere or the northern side in the southern hemisphere, their leaves provide shade during the summer, while the bare limbs allow light to pass during the winter.[33] Since bare, leafless trees shade 1/3 to 1/2 of incident solar radiation, there is a balance between the benefits of summer shading and the corresponding loss of winter heating.[34] In climates with significant heating loads, deciduous trees should not be planted on the Equator-facing side of a building because they will interfere with winter solar availability. They can, however, be used on the east and west sides to provide a degree of summer shading without appreciably affecting winter solar gain.[35]


Solar cookers use sunlight for cooking, drying, and pasteurization. They can be grouped into three broad categories: box cookers, panel cookers, and reflector cookers.[36] The simplest solar cooker is the box cooker first built by Horace de Saussure in 1767.[37] A basic box cooker consists of an insulated container with a transparent lid. It can be used effectively with partially overcast skies and will typically reach temperatures of 90–150 °C (194–302 °F).[38] Panel cookers use a reflective panel to direct sunlight onto an insulated container and reach temperatures comparable to box cookers. Reflector cookers use various concentrating geometries (dish, trough, Fresnel mirrors) to focus light on a cooking container. These cookers reach temperatures of 315 °C (599 °F) and above but require direct light to function properly and must be repositioned to track the Sun.[39]

Process heat

Solar concentrating technologies such as parabolic dish, trough and Scheffler reflectors can provide process heat for commercial and industrial applications. The first commercial system was the Solar Total Energy Project (STEP) in Shenandoah, Georgia, US where a field of 114 parabolic dishes provided 50% of the process heating, air conditioning and electrical requirements for a clothing factory. This grid-connected cogeneration system provided 400 kW of electricity plus thermal energy in the form of 401 kW steam and 468 kW chilled water, and had a one-hour peak load thermal storage.[40] Evaporation ponds are shallow pools that concentrate dissolved solids through evaporation. The use of evaporation ponds to obtain salt from seawater is one of the oldest applications of solar energy. Modern uses include concentrating brine solutions used in leach mining and removing dissolved solids from waste streams.[41] Clothes lines, clotheshorses, and clothes racks dry clothes through evaporation by wind and sunlight without consuming electricity or gas. In some states of the United States legislation protects the “right to dry” clothes.[42] Unglazed transpired collectors (UTC) are perforated sun-facing walls used for preheating ventilation air. UTCs can raise the incoming air temperature up to 22 °C (40 °F) and deliver outlet temperatures of 45–60 °C (113–140 °F).[43] The short payback period of transpired collectors (3 to 12 years) makes them a more cost-effective alternative than glazed collection systems.[43] As of 2003, over 80 systems with a combined collector area of 35,000 square metres (380,000 sq ft) had been installed worldwide, including an 860 m2 (9,300 sq ft) collector in Costa Rica used for drying coffee beans and a 1,300 m2 (14,000 sq ft) collector in Coimbatore, India, used for drying marigolds.[44]

Water treatment

Solar distillation can be used to make saline or brackish water potable. The first recorded instance of this was by 16th-century Arab alchemists.[45] A large-scale solar distillation project was first constructed in 1872 in the Chilean mining town of Las Salinas.[46] The plant, which had solar collection area of 4,700 m2 (51,000 sq ft), could produce up to 22,700 L (5,000 imp gal; 6,000 US gal) per day and operate for 40 years.[46] Individual still designs include single-slope, double-slope (or greenhouse type), vertical, conical, inverted absorber, multi-wick, and multiple effect. These stills can operate in passive, active, or hybrid modes. Double-slope stills are the most economical for decentralized domestic purposes, while active multiple effect units are more suitable for large-scale applications.[45]

Solar water disinfection (SODIS) involves exposing water-filled plastic polyethylene terephthalate (PET) bottles to sunlight for several hours.[47] Exposure times vary depending on weather and climate from a minimum of six hours to two days during fully overcast conditions.[48] It is recommended by the World Health Organization as a viable method for household water treatment and safe storage.[49] Over two million people in developing countries use this method for their daily drinking water.[48]

Solar energy may be used in a water stabilization pond to treat waste water without chemicals or electricity. A further environmental advantage is that algae grow in such ponds and consume carbon dioxide in photosynthesis, although algae may produce toxic chemicals that make the water unusable.[50][51]

Molten salt technology

Molten salt can be employed as a thermal energy storage method to retain thermal energy collected by a solar tower or solar trough of a concentrated solar power plant so that it can be used to generate electricity in bad weather or at night. It was demonstrated in the Solar Two project from 1995 to 1999. The system is predicted to have an annual efficiency of 99%, a reference to the energy retained by storing heat before turning it into electricity, versus converting heat directly into electricity.[52][53][54] The molten salt mixtures vary. The most extended mixture contains sodium nitrate, potassium nitrate and calcium nitrate. It is non-flammable and non-toxic, and has already been used in the chemical and metals industries as a heat-transport fluid. Hence, experience with such systems exists in non-solar applications.

The salt melts at 131 °C (268 °F). It is kept liquid at 288 °C (550 °F) in an insulated “cold” storage tank. The liquid salt is pumped through panels in a solar collector where the focused irradiance heats it to 566 °C (1,051 °F). It is then sent to a hot storage tank. This is so well insulated that the thermal energy can be usefully stored for up to a week.[55]

When electricity is needed, the hot salt is pumped to a conventional steam-generator to produce superheated steam for a turbine/generator as used in any conventional coal, oil, or nuclear power plant. A 100-megawatt turbine would need a tank about 9.1 metres (30 ft) tall and 24 metres (79 ft) in diameter to drive it for four hours by this design.

Several parabolic trough power plants in Spain[56] and solar power tower developer SolarReserve use this thermal energy storage concept. The Solana Generating Station in the U.S. has six hours of storage by molten salt. The María Elena plant[57] is a 400 MW thermo-solar complex in the northern Chilean region of Antofagasta employing molten salt technology.

Electricity production

Solar power is the conversion of sunlight into electricity, either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP). CSP systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. PV converts light into electric current using the photoelectric effect.

Solar power is anticipated to become the world’s largest source of electricity by 2050, with solar photovoltaics and concentrated solar power contributing 16 and 11 percent to the global overall consumption, respectively.[58] In 2016, after another year of rapid growth, solar generated 1.3% of global power.[59]

Commercial concentrated solar power plants were first developed in the 1980s. The 392 MW Ivanpah Solar Power Facility, in the Mojave Desert of California, is the largest solar power plant in the world. Other large concentrated solar power plants include the 150 MW Solnova Solar Power Station and the 100 MW Andasol solar power station, both in Spain. The 250 MW Agua Caliente Solar Project, in the United States, and the 221 MW Charanka Solar Park in India, are the world’s largest photovoltaic plants. Solar projects exceeding 1 GW are being developed, but most of the deployed photovoltaics are in small rooftop arrays of less than 5 kW, which are connected to the grid using net metering or a feed-in tariff.[60]


In the last two decades, photovoltaics (PV), also known as solar PV, has evolved from a pure niche market of small scale applications towards becoming a mainstream electricity source. A solar cell is a device that converts light directly into electricity using the photoelectric effect. The first solar cell was constructed by Charles Fritts in the 1880s.[61] In 1931 a German engineer, Dr Bruno Lange, developed a photo cell using silver selenide in place of copper oxide.[62] Although the prototype selenium cells converted less than 1% of incident light into electricity, both Ernst Werner von Siemens and James Clerk Maxwell recognized the importance of this discovery.[63] Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the crystalline silicon solar cell in 1954.[64] These early solar cells cost US$286/watt and reached efficiencies of 4.5–6%.[65] By 2012 available efficiencies exceeded 20%, and the maximum efficiency of research photovoltaics was in excess of 40%.[66]

Source: Solar energy, (last visited Mar. 12, 2021).

Download: this text is available as formatted Word file here:

List of solar-powered products

The following is a list of products powered by sunlight, either directly or through electricity generated by solar panels.

See also

Source: List of solar-powered products, (last visited Mar. 29, 2021).

Solar chargers

A solar charger is a charger that employs solar energy to supply electricity to devices or batteries. They are generally portable.

Solar chargers can charge lead acid or Ni-Cd battery banks up to 48 V and hundreds of ampere hours (up to 4000 Ah) capacity. Such type of solar charger setups generally use an intelligent charge controller. A series of solar cells are installed in a stationary location (ie: rooftops of homes, base-station locations on the ground etc.) and can be connected to a battery bank to store energy for off-peak usage. They can also be used in addition to mains-supply chargers for energy saving during the daytime.

Most portable chargers can obtain energy from the sun only. Examples of solar chargers in popular use include:

  • Small portable models designed to charge a range of different mobile phones, cell phones, iPods or other portable audio equipment.
  • Fold out models designed to sit on the dashboard of an automobile and plug into the cigar/12v lighter socket to keep the battery topped up while the vehicle is not in use.
  • Flashlights/torches, often combined with a secondary means of charging, such as a kinetic (hand crank generator) charging system.
  • Public solar chargers permanently installed in public places, such as parks, squares and streets, which anyone can use for free.

Voltage regulator

A solar panel can produce a range of charging voltages depending upon sunlight intensity, so a voltage regulator must be included in the charging circuit so as to not over-charge (overvoltage) a device such as a 12 volt car battery.

Solar chargers on the market

Portable solar chargers are used to charge cell phones and other small electronic devices on the go. Chargers on the market today use various types of solar panels, ranging from thin film panels with efficiencies from 7-15% (amorphous silicon around 7%, CIGS closer to 15%), to the slightly more efficient monocrystalline panels which offer efficiencies up to 18%.

The other type of portable solar chargers are those with wheels which enable them to be transported from one place to another and be used by a lot of people. They are semi-public, considering the fact that are used publicly but not permanently installed.[1]

The solar charger industry has been plagued by companies mass-producing low efficiency solar chargers that don’t meet the consumer’s expectations. This in turn has made it hard for new solar charger companies to gain the trust of consumers. Solar companies are starting to offer high-efficiency solar chargers. Portable solar power is being utilized in developing countries to power lighting as opposed to utilizing kerosene lamps which are responsible for respiratory infections, lung and throat cancers, serious eye infections, cataracts as well as low birth weights. Solar power provides an opportunity for rural areas to “leapfrog” traditional grid infrastructure and move directly to distributed energy solutions.

Some solar chargers also have an on-board battery which is charged by the solar panel when not charging anything else. This allows the user to be able to use the solar energy stored in the battery to charge their electronic devices at night or when indoors.

Solar chargers can also be rollable or flexible and are manufactured using thin film PV technology. Rollable solar chargers may include Li-ion batteries.

Currently, foldable solar panels are coming down in price to the point that almost anyone can deploy one while at the beach, biking, hiking, or at any outdoor location and charge their cellphone, tablet, computer etc.

Source: Solar charger, (last visited Mar. 29, 2021).

Solar-powered desalination unit

A solar-powered desalination unit produces potable water from saline water through direct or indirect methods of desalination powered by sunlight. Solar energy is the most promising renewable energy source due to its ability to drive the more popular thermal desalination systems directly through solar collectors and to drive physical and chemical desalination systems indirectly through photovoltaic cells.[1]

Direct solar desalination produces distillate directly in the solar collector. An example would be a solar still which traps the Sun’s energy to obtain freshwater through the process of evaporation and condensation. Indirect solar desalination incorporates solar energy collection systems with conventional desalination systems such as multi-stage flash distillation, multiple effect evaporation, freeze separation or reverse osmosis to produce freshwater.[2]

Direct solar desalination

Solar stills

One type of solar desalination unit is a solar still, it is also similar to a condensation trap. A solar still is a simple way of distilling water, using the heat of the Sun to drive evaporation from humid soil, and ambient air to cool a condenser film. Two basic types of solar stills are box and pit stills. In a pit still, impure water is contained outside the collector, where it is evaporated by sunlight shining through clear plastic. The pure water vapor condenses on the cool inside plastic surface and drips down from the weighted low point, where it is collected and removed. The box type is more sophisticated. The basic principles of solar water distillation are simple, yet effective, as distillation replicates the way nature makes rain. The sun’s energy heats water to the point of evaporation. As the water evaporates, water vapor rises, condensing on the glass surface for collection. This process removes impurities, such as salts and heavy metals, and eliminates microbiological organisms. The end result is water cleaner than the purest rainwater.

Indirect solar desalination

Indirect solar desalination systems comprise two sub-systems: a solar collection system and a desalination system. The solar collection system is used, either to collect heat using solar collectors and supply it via a heat exchanger to a thermal desalination process, or to convert electromagnetic solar radiation to electricity using photovoltaic cells to power an electricity-driven desalination process.

Solar-powered reverse osmosis

Osmosis is a natural phenomenon in which water passes through a membrane from a lower to a higher concentration solution. The flow of water can be reversed if a pressure larger than the osmotic pressure is applied on the higher concentration side. In Reverse osmosis desalination systems, seawater pressure is raised above the natural osmotic pressure, forcing pure water through membrane pores to the fresh water side. Reverse osmosis (RO) is the most common desalination process in terms of installed capacity due to its superior energy efficiency compared to thermal desalination systems, despite requiring extensive water pre-treatment. Furthermore, part of the consumed mechanical energy can be reclaimed from the concentrated brine effluent with an energy recovery device.[1]

Solar-powered RO desalination is common in demonstration plants due to the modularity and scalability of both photovoltaic (PV) and RO systems. A detailed economic analysis [3] and a thorough optimisation strategy [4] of PV powered RO desalination were carried out with favorable results reported. Economic and reliability considerations are the main challenges to improving PV powered RO desalination systems. However, the quickly dropping PV panel costs are making solar-powered desalination ever more feasible.

A solar powered desalination unit designed for remote communities has been tested in the Northern Territory of Australia. The “reverse-osmosis solar installation” (ROSI) uses membrane filtration to provide a reliable and clean drinking water stream from sources such as brackish groundwater. Solar energy overcomes the usually high-energy operating costs as well as greenhouse emissions of conventional reverse osmosis systems. ROSI can also remove trace contaminants such as arsenic and uranium that may cause certain health problems, and minerals such as calcium carbonate which causes water hardness.[5]

Project leader Dr Andrea Schaefer from the University of Wollongong‘s Faculty of Engineering said ROSI has the potential to bring clean water to remote communities throughout Australia that do not have access to a town water supply and/or the electricity grid.[5]

Groundwater (which may contain dissolved salts or other contaminants) or surface water (which may have high turbidity or contain microorganisms) is pumped into a tank with an ultrafiltration membrane, which removes viruses and bacteria. This water is fit for cleaning and bathing. Ten percent of that water undergoes nanofiltration and reverse osmosis in the second stage of purification, which removes salts and trace contaminants, producing drinking water. A photovoltaic solar array tracks the Sun and powers the pumps needed to process the water, using the plentiful sunlight available in remote regions of Australia not served by the power grid.[6]

Solar photo voltaic power is considered a viable option to power a reverse osmosis desalination plant. The techno-economics both in standalone mode and in PV-biodisel hybrid mode for capacities from 0.05 MLD to 300 MLD were examined by researchers at IIT Madras. As a technology demonstrator, a plant of 500 litre /day capacity has been designed, installed and functional there.[7]

Energy storage

While the intermittent nature of sunlight and its variable intensity throughout the day makes desalination during nighttime challenging, several energy storage options can be used to permit 24 hour operation. Batteries can store solar energy for use at night. Thermal energy storage systems ensure constant performance at night or on cloudy days, improving overall efficiency.[8] Alternatively, stored gravitational energy can be harnessed to provide energy to a solar-powered reverse osmosis unit during non-sunlight hours.

See also

Source: Solar-powered desalination unit, (last visited Mar. 29, 2021).

%d bloggers like this: